home *** CD-ROM | disk | FTP | other *** search
/ Suzy B Software 2 / Suzy B Software CD-ROM 2 (1994).iso / mintprgs / mintupgr / disk8.zoo / ash.zoo / usr / doc / ash / tour < prev   
Text File  |  1992-05-03  |  17KB  |  349 lines

  1. #    @(#)TOUR    5.1 (Berkeley) 3/7/91
  2.  
  3.                        A Tour through Ash
  4.  
  5.                Copyright 1989 by Kenneth Almquist.
  6.  
  7.  
  8. DIRECTORIES:  The subdirectory bltin contains commands which can
  9. be compiled stand-alone.  The rest of the source is in the main
  10. ash directory.
  11.  
  12. SOURCE CODE GENERATORS:  Files whose names begin with "mk" are
  13. programs that generate source code.  A complete list of these
  14. programs is:
  15.  
  16.         program         intput files        generates
  17.         -------         ------------        ---------
  18.         mkbuiltins      builtins            builtins.h builtins.c
  19.         mkinit          *.c                 init.c
  20.         mknodes         nodetypes           nodes.h nodes.c
  21.         mksignames          -               signames.h signames.c
  22.         mksyntax            -               syntax.h syntax.c
  23.         mktokens            -               token.def
  24.         bltin/mkexpr    unary_op binary_op  operators.h operators.c
  25.  
  26. There are undoubtedly too many of these.  Mkinit searches all the
  27. C source files for entries looking like:
  28.  
  29.         INIT {
  30.               x = 1;    /* executed during initialization */
  31.         }
  32.  
  33.         RESET {
  34.               x = 2;    /* executed when the shell does a longjmp
  35.                            back to the main command loop */
  36.         }
  37.  
  38.         SHELLPROC {
  39.               x = 3;    /* executed when the shell runs a shell procedure */
  40.         }
  41.  
  42. It pulls this code out into routines which are when particular
  43. events occur.  The intent is to improve modularity by isolating
  44. the information about which modules need to be explicitly
  45. initialized/reset within the modules themselves.
  46.  
  47. Mkinit recognizes several constructs for placing declarations in
  48. the init.c file.
  49.         INCLUDE "file.h"
  50. includes a file.  The storage class MKINIT makes a declaration
  51. available in the init.c file, for example:
  52.         MKINIT int funcnest;    /* depth of function calls */
  53. MKINIT alone on a line introduces a structure or union declara-
  54. tion:
  55.         MKINIT
  56.         struct redirtab {
  57.               short renamed[10];
  58.         };
  59. Preprocessor #define statements are copied to init.c without any
  60. special action to request this.
  61.  
  62. INDENTATION:  The ash source is indented in multiples of six
  63. spaces.  The only study that I have heard of on the subject con-
  64. cluded that the optimal amount to indent is in the range of four
  65. to six spaces.  I use six spaces since it is not too big a jump
  66. from the widely used eight spaces.  If you really hate six space
  67. indentation, use the adjind (source included) program to change
  68. it to something else.
  69.  
  70. EXCEPTIONS:  Code for dealing with exceptions appears in
  71. exceptions.c.  The C language doesn't include exception handling,
  72. so I implement it using setjmp and longjmp.  The global variable
  73. exception contains the type of exception.  EXERROR is raised by
  74. calling error.  EXINT is an interrupt.  EXSHELLPROC is an excep-
  75. tion which is raised when a shell procedure is invoked.  The pur-
  76. pose of EXSHELLPROC is to perform the cleanup actions associated
  77. with other exceptions.  After these cleanup actions, the shell
  78. can interpret a shell procedure itself without exec'ing a new
  79. copy of the shell.
  80.  
  81. INTERRUPTS:  In an interactive shell, an interrupt will cause an
  82. EXINT exception to return to the main command loop.  (Exception:
  83. EXINT is not raised if the user traps interrupts using the trap
  84. command.)  The INTOFF and INTON macros (defined in exception.h)
  85. provide uninterruptable critical sections.  Between the execution
  86. of INTOFF and the execution of INTON, interrupt signals will be
  87. held for later delivery.  INTOFF and INTON can be nested.
  88.  
  89. MEMALLOC.C:  Memalloc.c defines versions of malloc and realloc
  90. which call error when there is no memory left.  It also defines a
  91. stack oriented memory allocation scheme.  Allocating off a stack
  92. is probably more efficient than allocation using malloc, but the
  93. big advantage is that when an exception occurs all we have to do
  94. to free up the memory in use at the time of the exception is to
  95. restore the stack pointer.  The stack is implemented using a
  96. linked list of blocks.
  97.  
  98. STPUTC:  If the stack were contiguous, it would be easy to store
  99. strings on the stack without knowing in advance how long the
  100. string was going to be:
  101.         p = stackptr;
  102.         *p++ = c;       /* repeated as many times as needed */
  103.         stackptr = p;
  104. The folloing three macros (defined in memalloc.h) perform these
  105. operations, but grow the stack if you run off the end:
  106.         STARTSTACKSTR(p);
  107.         STPUTC(c, p);   /* repeated as many times as needed */
  108.         grabstackstr(p);
  109.  
  110. We now start a top-down look at the code:
  111.  
  112. MAIN.C:  The main routine performs some initialization, executes
  113. the user's profile if necessary, and calls cmdloop.  Cmdloop is
  114. repeatedly parses and executes commands.
  115.  
  116. OPTIONS.C:  This file contains the option processing code.  It is
  117. called from main to parse the shell arguments when the shell is
  118. invoked, and it also contains the set builtin.  The -i and -j op-
  119. tions (the latter turns on job control) require changes in signal
  120. handling.  The routines setjobctl (in jobs.c) and setinteractive
  121. (in trap.c) are called to handle changes to these options.
  122.  
  123. PARSING:  The parser code is all in parser.c.  A recursive des-
  124. cent parser is used.  Syntax tables (generated by mksyntax) are
  125. used to classify characters during lexical analysis.  There are
  126. three tables:  one for normal use, one for use when inside single
  127. quotes, and one for use when inside double quotes.  The tables
  128. are machine dependent because they are indexed by character vari-
  129. ables and the range of a char varies from machine to machine.
  130.  
  131. PARSE OUTPUT:  The output of the parser consists of a tree of
  132. nodes.  The various types of nodes are defined in the file node-
  133. types.
  134.  
  135. Nodes of type NARG are used to represent both words and the con-
  136. tents of here documents.  An early version of ash kept the con-
  137. tents of here documents in temporary files, but keeping here do-
  138. cuments in memory typically results in significantly better per-
  139. formance.  It would have been nice to make it an option to use
  140. temporary files for here documents, for the benefit of small
  141. machines, but the code to keep track of when to delete the tem-
  142. porary files was complex and I never fixed all the bugs in it.
  143. (AT&T has been maintaining the Bourne shell for more than ten
  144. years, and to the best of my knowledge they still haven't gotten
  145. it to handle temporary files correctly in obscure cases.)
  146.  
  147. The text field of a NARG structure points to the text of the
  148. word.  The text consists of ordinary characters and a number of
  149. special codes defined in parser.h.  The special codes are:
  150.  
  151.         CTLVAR              Variable substitution
  152.         CTLENDVAR           End of variable substitution
  153.         CTLBACKQ            Command substitution
  154.         CTLBACKQ|CTLQUOTE   Command substitution inside double quotes
  155.         CTLESC              Escape next character
  156.  
  157. A variable substitution contains the following elements:
  158.  
  159.         CTLVAR type name '=' [ alternative-text CTLENDVAR ]
  160.  
  161. The type field is a single character specifying the type of sub-
  162. stitution.  The possible types are:
  163.  
  164.         VSNORMAL            $var
  165.         VSMINUS             ${var-text}
  166.         VSMINUS|VSNUL       ${var:-text}
  167.         VSPLUS              ${var+text}
  168.         VSPLUS|VSNUL        ${var:+text}
  169.         VSQUESTION          ${var?text}
  170.         VSQUESTION|VSNUL    ${var:?text}
  171.         VSASSIGN            ${var=text}
  172.         VSASSIGN|VSNUL      ${var=text}
  173.  
  174. In addition, the type field will have the VSQUOTE flag set if the
  175. variable is enclosed in double quotes.  The name of the variable
  176. comes next, terminated by an equals sign.  If the type is not
  177. VSNORMAL, then the text field in the substitution follows, ter-
  178. minated by a CTLENDVAR byte.
  179.  
  180. Commands in back quotes are parsed and stored in a linked list.
  181. The locations of these commands in the string are indicated by
  182. CTLBACKQ and CTLBACKQ+CTLQUOTE characters, depending upon whether
  183. the back quotes were enclosed in double quotes.
  184.  
  185. The character CTLESC escapes the next character, so that in case
  186. any of the CTL characters mentioned above appear in the input,
  187. they can be passed through transparently.  CTLESC is also used to
  188. escape '*', '?', '[', and '!' characters which were quoted by the
  189. user and thus should not be used for file name generation.
  190.  
  191. CTLESC characters have proved to be particularly tricky to get
  192. right.  In the case of here documents which are not subject to
  193. variable and command substitution, the parser doesn't insert any
  194. CTLESC characters to begin with (so the contents of the text
  195. field can be written without any processing).  Other here docu-
  196. ments, and words which are not subject to splitting and file name
  197. generation, have the CTLESC characters removed during the vari-
  198. able and command substitution phase.  Words which are subject
  199. splitting and file name generation have the CTLESC characters re-
  200. moved as part of the file name phase.
  201.  
  202. EXECUTION:  Command execution is handled by the following files:
  203.         eval.c     The top level routines.
  204.         redir.c    Code to handle redirection of input and output.
  205.         jobs.c     Code to handle forking, waiting, and job control.
  206.         exec.c     Code to to path searches and the actual exec sys call.
  207.         expand.c   Code to evaluate arguments.
  208.         var.c      Maintains the variable symbol table.  Called from expand.c.
  209.  
  210. EVAL.C:  Evaltree recursively executes a parse tree.  The exit
  211. status is returned in the global variable exitstatus.  The alter-
  212. native entry evalbackcmd is called to evaluate commands in back
  213. quotes.  It saves the result in memory if the command is a buil-
  214. tin; otherwise it forks off a child to execute the command and
  215. connects the standard output of the child to a pipe.
  216.  
  217. JOBS.C:  To create a process, you call makejob to return a job
  218. structure, and then call forkshell (passing the job structure as
  219. an argument) to create the process.  Waitforjob waits for a job
  220. to complete.  These routines take care of process groups if job
  221. control is defined.
  222.  
  223. REDIR.C:  Ash allows file descriptors to be redirected and then
  224. restored without forking off a child process.  This is accom-
  225. plished by duplicating the original file descriptors.  The redir-
  226. tab structure records where the file descriptors have be dupli-
  227. cated to.
  228.  
  229. EXEC.C:  The routine find_command locates a command, and enters
  230. the command in the hash table if it is not already there.  The
  231. third argument specifies whether it is to print an error message
  232. if the command is not found.  (When a pipeline is set up,
  233. find_command is called for all the commands in the pipeline be-
  234. fore any forking is done, so to get the commands into the hash
  235. table of the parent process.  But to make command hashing as
  236. transparent as possible, we silently ignore errors at that point
  237. and only print error messages if the command cannot be found
  238. later.)
  239.  
  240. The routine shellexec is the interface to the exec system call.
  241.  
  242. EXPAND.C:  Arguments are processed in three passes.  The first
  243. (performed by the routine argstr) performs variable and command
  244. substitution.  The second (ifsbreakup) performs word splitting
  245. and the third (expandmeta) performs file name generation.  If the
  246. "/u" directory is simulated, then when "/u/username" is replaced
  247. by the user's home directory, the flag "didudir" is set.  This
  248. tells the cd command that it should print out the directory name,
  249. just as it would if the "/u" directory were implemented using
  250. symbolic links.
  251.  
  252. VAR.C:  Variables are stored in a hash table.  Probably we should
  253. switch to extensible hashing.  The variable name is stored in the
  254. same string as the value (using the format "name=value") so that
  255. no string copying is needed to create the environment of a com-
  256. mand.  Variables which the shell references internally are preal-
  257. located so that the shell can reference the values of these vari-
  258. ables without doing a lookup.
  259.  
  260. When a program is run, the code in eval.c sticks any environment
  261. variables which precede the command (as in "PATH=xxx command") in
  262. the variable table as the simplest way to strip duplicates, and
  263. then calls "environment" to get the value of the environment.
  264. There are two consequences of this.  First, if an assignment to
  265. PATH precedes the command, the value of PATH before the assign-
  266. ment must be remembered and passed to shellexec.  Second, if the
  267. program turns out to be a shell procedure, the strings from the
  268. environment variables which preceded the command must be pulled
  269. out of the table and replaced with strings obtained from malloc,
  270. since the former will automatically be freed when the stack (see
  271. the entry on memalloc.c) is emptied.
  272.  
  273. BUILTIN COMMANDS:  The procedures for handling these are scat-
  274. tered throughout the code, depending on which location appears
  275. most appropriate.  They can be recognized because their names al-
  276. ways end in "cmd".  The mapping from names to procedures is
  277. specified in the file builtins, which is processed by the mkbuil-
  278. tins command.
  279.  
  280. A builtin command is invoked with argc and argv set up like a
  281. normal program.  A builtin command is allowed to overwrite its
  282. arguments.  Builtin routines can call nextopt to do option pars-
  283. ing.  This is kind of like getopt, but you don't pass argc and
  284. argv to it.  Builtin routines can also call error.  This routine
  285. normally terminates the shell (or returns to the main command
  286. loop if the shell is interactive), but when called from a builtin
  287. command it causes the builtin command to terminate with an exit
  288. status of 2.
  289.  
  290. The directory bltins contains commands which can be compiled in-
  291. dependently but can also be built into the shell for efficiency
  292. reasons.  The makefile in this directory compiles these programs
  293. in the normal fashion (so that they can be run regardless of
  294. whether the invoker is ash), but also creates a library named
  295. bltinlib.a which can be linked with ash.  The header file bltin.h
  296. takes care of most of the differences between the ash and the
  297. stand-alone environment.  The user should call the main routine
  298. "main", and #define main to be the name of the routine to use
  299. when the program is linked into ash.  This #define should appear
  300. before bltin.h is included; bltin.h will #undef main if the pro-
  301. gram is to be compiled stand-alone.
  302.  
  303. CD.C:  This file defines the cd and pwd builtins.  The pwd com-
  304. mand runs /bin/pwd the first time it is invoked (unless the user
  305. has already done a cd to an absolute pathname), but then
  306. remembers the current directory and updates it when the cd com-
  307. mand is run, so subsequent pwd commands run very fast.  The main
  308. complication in the cd command is in the docd command, which
  309. resolves symbolic links into actual names and informs the user
  310. where the user ended up if he crossed a symbolic link.
  311.  
  312. SIGNALS:  Trap.c implements the trap command.  The routine set-
  313. signal figures out what action should be taken when a signal is
  314. received and invokes the signal system call to set the signal ac-
  315. tion appropriately.  When a signal that a user has set a trap for
  316. is caught, the routine "onsig" sets a flag.  The routine dotrap
  317. is called at appropriate points to actually handle the signal.
  318. When an interrupt is caught and no trap has been set for that
  319. signal, the routine "onint" in error.c is called.
  320.  
  321. OUTPUT:  Ash uses it's own output routines.  There are three out-
  322. put structures allocated.  "Output" represents the standard out-
  323. put, "errout" the standard error, and "memout" contains output
  324. which is to be stored in memory.  This last is used when a buil-
  325. tin command appears in backquotes, to allow its output to be col-
  326. lected without doing any I/O through the UNIX operating system.
  327. The variables out1 and out2 normally point to output and errout,
  328. respectively, but they are set to point to memout when appropri-
  329. ate inside backquotes.
  330.  
  331. INPUT:  The basic input routine is pgetc, which reads from the
  332. current input file.  There is a stack of input files; the current
  333. input file is the top file on this stack.  The code allows the
  334. input to come from a string rather than a file.  (This is for the
  335. -c option and the "." and eval builtin commands.)  The global
  336. variable plinno is saved and restored when files are pushed and
  337. popped from the stack.  The parser routines store the number of
  338. the current line in this variable.
  339.  
  340. DEBUGGING:  If DEBUG is defined in shell.h, then the shell will
  341. write debugging information to the file $HOME/trace.  Most of
  342. this is done using the TRACE macro, which takes a set of printf
  343. arguments inside two sets of parenthesis.  Example:
  344. "TRACE(("n=%d0, n))".  The double parenthesis are necessary be-
  345. cause the preprocessor can't handle functions with a variable
  346. number of arguments.  Defining DEBUG also causes the shell to
  347. generate a core dump if it is sent a quit signal.  The tracing
  348. code is in show.c.
  349.